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Lie Algebras

I Vector space g over C, Lie Bracket [·, ·] : g× g→ g

I Bilinear: [x + y , z ] = [x , z ] + [y , z ], α[x , y ] = [αx , y ]
I Anticommutative: [x , y ] = −[y , x ]
I Jacobi identity [x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0

Example

I gln(C), n × n complex matrices
I [a, b] = ab − ba

Example

Abelian Lie Algebras: g = V , a vector space, with [·, ·] = 0
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Examples of Lie Algebras

Example

sl2(C): 2× 2 complex matrices with trace 0.

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
with

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.



Affine Kac-Moody Algebra ŝl2

I Vector space over C with basis en, fn, hn and K for n ∈ Z.

[hm, en] = 2em+n, [hm, hn] = 2mδm+n,0K ,

[em, fn] = −hm+n −mδm+n,0K , [hm, fn] = −2fm+n.

I A representation at level κ = 1
2 is a vector space V and a Lie

algebra homomorphism ρ : ŝl2 → End(V ) such that K acts by
1
2 id .

I ρ([x , y ]) = ρ(x)ρ(y)− ρ(y)ρ(x).
I ρ(x) and ρ(y) are linear maps V :→ V .
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The Representations Lr , for r = 0, 1, 2, 3

I L(r) is the finite dimensional irreducible sl2-module of highest
weight r . We have basis vectors ur , ur−2, . . . , u−r , such that

f0 · uk = uk−2.

I U ŝl2
−

has basis of monomials
. . . f

a−n
−n ebn−nh

cn
−nf

a−n−1

−n+1 e
b−n+1

−n+1h
c−n+1

−n+1 . . .

I We form U ŝl2
−
⊗ L(r) and this is an ŝl2-module at level 1

2 .
The zero grade subspace identifies with L(r).

I U ŝl2
−
⊗ L(r) has a maximal proper subrepresentation and Lr

is the quotient by it.



Singular Vectors

I A singular vector is a vector v in U ŝl2
−
⊗ L(r) such that

en · v = 0 for all n ≥ 0 and fn · v = hn · v = 0 for all n ≥ 1.

I For L3, we calculate the singular vector to be

(−15e−2 + 6e−1h−1)u3 + (−4e2
−1)u1.

I Will be necessary to describe fusion products later on.



The Representations EΛ,α

I R(Λ, α) is generated by vΛ+2α.

I Like Lr except with an infinite zero grade, consisting of
vΛ+2α+2n for n ∈ Z.

I EΛ,α is the quotient of U ŝl2
−
⊗ R(Λ, α) by its maximal proper

submodule.

I We consider only Λ = 3
2 and 5

2 with α = ±1
4 .

I A relaxed singular vector is a vector w ∈ EΛ,α such that

fn · w = en · w = hn · w = 0

for all n ≥ 1.

I For EΛ=5/2,α, we calculate the relaxed singular vector to be(
e−1f0 − αh−1 +

2α

2α + 5
f−1e0

)
vΛ+2α.
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Singular Vector Describing E3/2,α

e−3f0 + (−4

3
α− 2

3
)h−3 +

1 + 2α

2(1 + α)(2 + α)
f−2f−1e

2
0 +
−α− 1/2

α + 1
f−2h−1e0

+ (α +
1

2
)f−2e−1 −

1

α− 1
2

e−2e−1f
2

0 + e−2h−1f0

− (α +
1

2
)e−2f−1 −

1
2α + 1

4

α + 1
h−2f−1e0 −

1

2
h−2e−1f0

+ (
1

2
α +

1

4
)h−2h−1 +

1 + 2α

12(1 + α)(2 + α)(3 + α)
f 3
−1e

3
0 +

1/2α + 1/4

α + 1
f 2
−1e−1e0

− 1 + 2α

4(1 + α)(2 + α)
f 2
−1h−1e

2
0 +

2

3(−3 + 2α)(−1 + 2α)
e3
−1f

3
0 +

1

2
f−1e

2
−1f0

−
1
2

α− 1/2
e2
−1h−1f

2
0 −

1

6
(α +

1

2
)h3
−1 +

1
2α + 1

4

α + 1
f−1h

2
−1e0 +

1

2
e−1h

2
−1f0 − (α +

1

2
)f−1e−1h−1.



The Project: Computing Fusion Products

I Fusion is an interesting algebraic operation for ŝl2-modules M
and N at a fixed level that resembles the tensor product and
has important applications in two-dimensional Conformal Field
Theory.

I The fusion product M×N is another ŝl2-module at this level
and (K ×M)×N ∼= K × (M×N ) and M×N ∼= N ×M
holds. We have L0 ×M ∼=M.

I It has been analyzed at positive integral level.

I Our project is to compute fusion products in the new case of
modules at level 1

2 . (Ridout: κ = −1
2 , Gaberdiel: κ = −4/3.)
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and (K ×M)×N ∼= K × (M×N ) and M×N ∼= N ×M
holds. We have L0 ×M ∼=M.

I It has been analyzed at positive integral level.

I Our project is to compute fusion products in the new case of
modules at level 1

2 . (Ridout: κ = −1
2 , Gaberdiel: κ = −4/3.)



Definition of Fusion Products

I Fusion product M×N is a quotient of M⊗N .
I For J = e, f , or h, the action of Jn, denoted ∆(Jn), is given

by the following rules:

n ≥ 0 ∆(Jn) :=
n∑

m=0

(
n

m

)
Jm ⊗ 1 + 1⊗ Jn

n ≥ 1 ∆(J−n) :=
∞∑

m=0

(
n + m − 1

m

)
(−1)mJm ⊗ 1 + 1⊗ J−n

I The goal is to decompose these fusion products into direct
sums. For example, representations Lr and EΛ,α that we
already know may appear.
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Fusion to Grade Zero

I Focus only on the zero grade of the representations M,N .

I Do this by setting all negative-grade expressions e−n, f−n, h−n
to zero.

I We use an algorithm to convert any v ⊗ w into zero-grade
vectors:

If v = J−nv
′ for some n > 0, then v ⊗ w = −(−1)nv ′ ⊗ J0w .

If w = J−nw
′ for some n > 0, then v ⊗ w = −J0v ⊗ w ′.

I By the above algorithm, singular vectors describing M and N
give rise to vectors which must be set to 0 in the tensor
product of the zero grades of M and N .
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Results of Fusion to Grade Zero

Theorem

1. L3 × L3 = L0

2. L3 × L2 = L1

3. L3 × L1 = L2

4. L2 × L2 = L2 ⊕ L0

5. L2 × L1 = L3 ⊕ L1

6. L1 × L1 = L2 ⊕ L0.

1. E5/2,1/4 × L3 = E5/2,−1/4

2. E5/2,1/4 × L2 = E3/2,−1/4

3. E5/2,1/4 × L1 = E3/2,1/4

4. E3/2,1/4 × L3 = E3/2,−1/4

5. E3/2,1/4 × L2 = E3/2,1/4 ⊕ E5/2,−1/4

6. E3/2,1/4 × L1 = E3/2,−1/4 ⊕ E5/2,1/4.



Future Goals

I We are working on zero grade fusion of EΛ,α with EΛ′,α′ .

I Compute fusion products to higher grades, since grade zero
cannot fully describe fusion of EΛ,α with EΛ′,α′ .

I Compute the full fusion products.

I See if the fusion operation closes on the representations we
work with, which is important for conformal field theory.
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